PLANNING ALTERNATIVES
Terrafix units offer unequaled design options to cope with most site conditions.

Typical applications:
- General erosion control
- Riverbank and levee protection
- Storm water control and spillways
- Embankments and slope stabilization
- Bridge abutments

WHY TERRAFIX?

Rampant urbanisation and poor farming practices lead to increased water run-off and uncontrolled soil erosion as never before. Rivers have to cope with increased peak runoff while at the same time more and more are canalised. This requires increased and improved bank protection systems to safeguard people and property. Outside urban areas, reliable bank and bed protection is also required for causeways, embankments, spillways and migration canals.

A heavy responsibility thus rests on the shoulders of engineers, architects and designers to ensure that their projects impact positively on the environment of future generations.

PRESERVE OUR SOIL, IT IS PRECIOUS!

View more benefits, features and case studies on: www.terraforce.com
ALL ABOUT TERRAFIX

Terrafix is an interlocking environmentally acceptable element, made of high strength concrete. It was specifically designed to provide a flexible lining where cost-effective protection against wind and water erosion is required. They are available in three different thicknesses and can be laid in a variety of configurations to suit most site conditions.

This makes it the ideal product to help combat the rapid degradation of our rivers and streams, caused by uncontrolled urbanisation and poor farming practices all over South Africa and the world. Terrafix can help prevent our soil being eroded away, while still being permeable enough to help preserve our precious ground water reserves and biodiversity.

CHARACTERISTICS

The elements are made out of durable concrete and therefore can be used in most soils or polluted conditions. Units interlock laterally and offer a secure yet flexible lining.

They are highly permeable but can be made impermeable by either placing an impervious membrane underneath the blocks or by gouging the structure with concrete or mastics. The system offers one of the most cost-effective and speedy erosion control methods and provides a perfect regime for establishing vegetation. Stabilises vegetation takes root.

Terrafix units are available in three thicknesses, namely 100, 120 and 160 mm. They can be laid in different configurations ranging from four blocks to 10 blocks per square metre. This way over-design and overspending is avoided.

APPLICATIONS

Embankments and slope stabilisation:

Road and railway bridge abutments can be protected against wind and water erosion with good effect and erosion problems or aesthetic considerations of embankments and cuttings can be effectively countered with the TERRAFIX system. Protection is offered to a varying degree by allowing the choice of appropriate laying patterns and thicknesses.

Riverbank and shoreline protection:

Works subject to wave erosion may be protected with TERRAFIX. The lining can be strengthened with ground anchors or made impervious by employing partial or total concrete or mastics gouging. Hydrostatic pressure relief openings must be provided where necessary.

The system lends itself to providing an effective lining for river banks, canals, reservoirs and lakes. Under such circumstances it is essential to carefully design a suitable filter underneath each structure in order to prevent leaching of fines. Woven or non-woven geotextiles are considered to be the most suitable.

Erosion at the toe of the bank is prevented by continuing the lining to below anticipated depth of scour. Below the waterline, voids should be filled with coarse material and with topsoil above normal waterline.

Graded rock or woven/non-woven geotextile filters are to be provided where necessary, to prevent leaching of fine soil particles.

Stormwater control and spillways:

The elements are used for lining dam spillways and sloping weirs, stormwater attenuation ponds or downstream aprons. They are also ideal for lining water courses of varying sizes from small ditches to large canals. In designing such structures a roughness coefficient of 0.04 (CERC 1984) has to be assumed.

DESIGN CONSIDERATIONS

A feasibility study into the hydraulic applications of the TERRAFIX system by the division of Earth, Marine and Atmospheric Science and Technology of the CSIR has revealed very positive characteristics. A copy of this report is available on request.

Information contained in this brochure is furnished as a guideline only. The responsibility for correct utilisation, design and construction will rest with the controlling engineer or contractor.

For best results and technical advice, contact our recommended contractors.

For hydraulic applications, the CSIR can also be approached.

Please consult our website at www.terraforce.com for more information on TERRAFIX and any of our other quality products.

Copyright Terraforce 2007